Share:

Friday, September 1, 2023

Low Level Landscape Lighting (LLL)

Palouse Falls (eastern Washington state) with and without Low Level Lighting (LLL) • 20 sec, f/2.8, ISO 6400, with a 15mm ultra-wide lens on a full-frame DSLR camera • Copyright Royce Bair • Click image to enlarge


Low Level Landscape Lighting (LLL) public service webpage, provided by Royce Bair and Wayne Pinkston.

What is Low Level Lighting (LLL)?

  • LLL is NOT light painting — which is moving, momentary and difficult to repeat. Light painting is usually a very bright form of artificial lighting, which is jarring to your eyes and others around you.
  • LLL is a form of "stationary lighting" (on a light stand, tripod or lying on the ground).
  • LLL is constantly on during all camera exposures — making it ideal for stacking, panoramas, time-lapse and group settings.
  • LLL has a very low level brightness on the foreground surface that is less than or equal to the light from a Quarter Moon. LLL adds very little light pollution, allowing the stars to be easily seen.


Comparing LLL Intensity with Natural Light

A Comparison of Natural Light Intensity on Earth Coming From the Sun:

The measurement of light falling on the earth from the overhead Sun (90º) is 129,000 Lux. At sunset this drops to 759 Lux. At the start of the Astronomical Dusk (-18.0º), illumination from the sun drops to 0.000645 Lux! This is the darkest period of the night and the best time to photograph the Milky Way stars.

Photo courtesy of PhotoPills


   Sun Position  Intensity      Time of Day                  

  • 90 degrees  129,000 lux    Noonday Sun
  •  0             759         At Sunset
  •  -4             29.9       Start of Blue Hour
  •  -6              3.41      End of Blue Hour 
  •  -12             0.00806   Start Astro Twilight
  •  -18             0.000645  During Astro Dusk

Add to the Astronomical Dusk illumination and you get the following:

  • Total Starlight only 0.0002 lux
  • Total Starlight + airglow 0.002
  • Typical LLL "base" intensity 0.008
  • Quarter Moon phase at 30º 0.00958 
  • Quarter Moon phase at 45º 0.01602
  • Typical LLL "accent" intensity 0.024
  • Quarter Moon phase overhead (90º) 0.0267
  • Full Moon phase at 30º 0.09583
  • Full Moon phase at 45º 0.1602
  • Full Moon phase overhead (90º) 0.267


Click image to enlarge - ©Royce Bair

CONCLUSION: The typical intensity of LLL base lighting is only about 4 times brighter than starlight, and even the intensity of LLL accent lighting is less that Quarter Phase Moonlight!

Here's another example of Low Level Lighting in practice:

Rainbow Bridge (290 feet/88 meters tall, in Utah) photographed with and without Low Level Lighting. The "base" light (an LED panel light dimmed to only 5%) is about 500 feet (154 m.) from the bridge, and producing about 0.008 lux on the surface of the bridge (about 4X greater than the lux from starlight and airglow). Another panel light is behind the bridge, and is dimmed to about 15%. This produces an "accent" illumination under the bridge (about 0.024 lux on the surface), giving more character, shading and dimension. All single exposures were 25 seconds each @ f/2.8, ISO 6400, with a 15mm ultra-wide lens on a full-frame DSLR camera. © Royce Bair. • Click image to enlarge.

How Does Low Level Lighting Compare to Starlight Blends and Twilight Blends?

Low Level Lighting at "Temple of the Moon" ~ Capitol Reef Nat'l Park. © Royce Bair • Click image to enlarge

1. A single exposure (15mm lens on a Canon 6D • f/2.8, 15 sec, ISO 8000)

2. Same EXIF, but with my LLL, and stacked 18 times to reduce noise. I like the drama and "character" one can achieve with LLL — it's similar to moonlight, but you get to control the direction of the light, and it doesn't wash out or lower the contrast of your Milky Way sky.

3. Longer foreground exposure, using overhead starlight (f/4, 120 sec, ISO 6400, with Long Exposure Noise Reduction turned on), then blended with the sky exposure in number one. I like the detail I get in the foreground, but I often do not like the "flat" lighting this technique gives you. One remedy is to do a Blue Hour blend rather than a starlight blend, as these twilight blends have more of from-the-side directional light (see the bottom of this blend page for more details).

4. My LLL exposure (from 2.) blended with the foreground exposure from number 3. This gives me the best on both techniques: more foreground detail (from the longer starlight exposure) AND more "character" from the LLL.

Artificial Light Restrictions in some national parks: As of May 25, 2021 there is no longer any artificial lighting allowed in Capitol Reef National Park due to a new Superintendent’s Compendium.

Capitol Reef now joins Arches, Canyonlands, Zion and Grand Teton National Park (and Natural Bridges Nat'l Mon.) in this artificial light restriction (Bryce has an artificial light restriction, but it only pertains to the viewing of wildlife). Currently, there are only five of the 63 national parks with this restriction, and only one of the 133 national monuments have this restriction. None of the BLM lands have this restriction (that's 245 million acres compared to the 50 million ares of National Parks land). I don't know of any state parks that have an artificial light restriction, but some like the Valley of Fire in Nevada do not allow photography after sunset.


HOW TO SET UP YOUR LOW LEVEL LIGHTING













Tuesday, August 8, 2023

Updated ''Milky Way NightScape'' eBook Version 2.0

 

My NEW updated eBook coming out the end of March 2024

PRE-ORDER for end March eBook Delivery - Get Weekly Updates NOW. Only $29.99. Why wait until March 2024 to get my new, updated eBook? You can get BOTH my original version 1.1 (with immediate download) and pre-order version 2.0 for March 2024 delivery. I'm publishing weekly updates of my new Version 2.0 eBook right now. People who pre-order my eBook are receiving these updates every week, and at the end of March 2024, they'll receive the completely compiled and edited Version 2.0 eBook.

It's known as "serialization" — where a book is written and released in small pieces over a period of time. It also keeps me on schedule to finish the book by the end of March 2024!

WHAT'S BEING UPDATED? Over 100 new pages (200+ in all). Over 300 new images/illustrations (600 in all). Why? There have been many new advances in technology and techniques since I wrote the original eBook. To make Version 2.0 more interesting and authoritative, I'm featuring "Guest Artists" or experts throughout the book, in addition to my own writings and tutorials. Most of these pages will have links to additional resources and tutorials outside my eBook, where the reader can get step-by-step instruction on these new advances.

SAMPLE UPDATES. HERE are six (6) sample pages from my new eBook and a typical weekly update (these come to you as PDF downloads).

Sample pages - Click to view individually

This new version is expected to be about 50% larger than the original 1.1 version (which was 140 pages). That is because it covers many new techniques that were not available in the original version. 


My original Version 1.1 eBook

The ORIGINAL eBook is still available for $19.99. Thousands have purchased my original Version 1.1 "Milky Way NightScape" eBook and consider it the most thorough book ever written on astro landscape photography (140 pages, over 33,000 words of text, with over 490 illustrative images). Even though this book is several years old, it is still an excellent guide for jump starting your nightscape photography!

Pre-order BUNDLE: Get BOTH version 1.1 and version 2.0 for only $29.99

My original version 1.1 regularly sells for $19.99, and version 2.0 will be selling for $29.99, starting in April 2024 (a total of $49.98 for both eBooks). You are getting both in this pre-order for only $29.99 — a savings of almost $20.00!










Monday, August 7, 2023

Smartphones for Nightscape Photography

"A photo of Me with the Arch and Starry Sky" by Wu Zhengjie. Taken with a vivo X90 Pro+ ~ Night Category 1st Place winner in the vivo VISION+ Mobile PhotoAwards 2023 (click image to enlarge).

The technology for smartphone cameras is changing rapidly! When I published version 1.1 of my Milky Way NightScapes ebook there were no mobile phone cameras that could decently capture blue hour twilight photographs, let alone photograph the Milky Way stars during the Astronomical Dusk!

Currently, there are are over a dozen smartphone cameras that can do a fairly good job of photographing starry night skies. I will list them below, in order of my preference (based on my research and some of the reviews listed at the bottom of this blog). This list will be updated periodically, so please come back.

MY BEST SMARTPHONE PICKS FOR NIGHTSCAPE PHOTOGRAPHY

  1. Vivo X90 Pro+
  2. Samsung Galaxy S23 Ultra
  3. Google Pixel 7 Pro
  4. Apple iPhone 14 Pro
  5. Samsung Galaxy S23
  6. Google Pixel 6 Pro
  7. Apple iPhone 13 Pro
  8. Samsung Galaxy S22 Ultra
  9. HUAWEI P50 Pro
  10. Samsung Galaxy S21 Ultra
  11. Huawei P40 Pro+
  12. Xiaomi 13 Pro
  13. OnePlus 11
  14. Xiaomi Redmi Note 11 Pro
  15. OnePlus 10 Pro


REVIEWS:

Best camera phone 2023: Smartphones with stargazing capabilities (March 2023)

The 10 Best Phones for Astrophotography (Apr 20, 2023)

5 Best Smartphones For Night Photography! (July 5, 2023)

Night Photography with vivo X90 Pro! - (May 10, 2023) Note: This YouTube video starts at the "Astro Shooting" — you may wish to rewind to the beginning, to see all the features

The Best Smartphones for Astrophotography in 2023 (April 25, 2023)

Friday, August 4, 2023

Setting Up Low Level Landscape Lighting

Low Level Landscape Lighting (LLL) at Fairyland Point, Bryce Canyon Nat'l Park • Lights off in top photo • Two LED panel lights turned on (each at about 5%) in middle photo • Camera moved to left in bottom photo, and pointed up to show more sky. Post processing contrast added to sky (orange light pollution reflecting on clouds from nearby town) • © Royce Bair • Click on image to enlarge

 How I Set Up My Low Level Landscape Lighting (LLL)
for Nightscape Photography

Return to LLL BASICS Home Page



I've been using the F&V Z96 LED Panel Lights for about a decade in my Low Level Lighting. They use five AA batteries, come with magnetic diffusion and warming filters, and have an analog off/on dimmer switch on the back. The Lume Cube LED panel lights are smaller, lighter, have built in Li-on rechargeable batteries, and have digital dimmer switches that show the exact light intensity output (1% to 100%) and the amount of power that is left in the battery. The light color is also digitally controlled from 5600ºK to 3200ºK. You can read my reviews on all three of these lights via the above links.

I use the Lume Cube Panel MINI as the main (base) light source in most of my LLL set ups where the foreground landscape that I'm lighting is less than 300 feet (91 meters) away. Even at this distance, I'm typically using a light intensity of less than 40% power. For distances greater than 300 feet (91 meters), I use the larger Lume Cube RGB Panel Go (which replaced the original Lume Cube Panel).


Omni-directional "camp" lanterns compared

Camp lanterns put out an omni-directional light that are great for use as "accent" lights — putting a warm glow behind a landscape feature, or under an arch. The top photo shows six different digital LED lanterns I have used over the years. Number 1 has the digital likeness and size of a Coleman gas lantern. Number 6 is the one I now use the most. It is the Goal Zero Lighthouse Micro. Its On/Off/Dimmer Button can control whether two LED lights are used (180º light coverage) or four LED lights are used (360º light coverage). It can also control the intensity of those lights. Wrapping semi-translucent cloth (or tissue paper) and colored filters around the lanterns can added additional controls for diffusion and warming the color of the lights.


© Royce Bair • Click image to enlarge

Two filtered camp lanterns were placed under Sunset Arch, in the top photo. A single panel light from the left side provided the dramatic "base" or main illumination. A single filtered camp lantern lighted the underside of Mesa Arch in the bottom photo. The lantern is hanging from a string about 50 feet (15 meters) below the arch (the string is tied to a rock). The intensity of the lantern is easily controlled by raising or lowering the lantern. Two panel lights provided the "base" or main illumination — one on either side of the arch. The panel light on the right side was set at twice the intensity as the panel on the left side, in order to provide shading on the rocks, but with some shadow detail.


LIGHTING TUTORIAL ~ 5 Ways to Produce More Even Lighting

    1. Increase lighting distance
    2. Scrim the foreground
    3. Place the light higher
    4. Feather the light
    5. Use a 2nd light for "fill"

CLICK for a 4-minute video tutorial


LIGHT STANDS

The Impact brand is one of my inexpensive favorites because they are so sturdy and tall (they can rise to a height of 9.5 feet, which makes them great for item #3, above), and they have a wide footprint (52") for greater stability—you'll appreciate that on windy nights. Disadvantages: They are all aluminum, so they are a little heavier than the carbon stands, which are better for backpacking into a location. They are also not as compact (42" when folded), which makes them more suitable for locations close to your vehicle.


The Manfrotto MS0490C Carbon Fiber Nanopole light stand costs about four times as much as the Impact light stands, but your back will appreciate the weight difference, if you have to backpack into your location. Although the stand only goes to 6.5 feet (77.5" / 196.8 cm) height, I can usually make up for that by finding higher ground (and it comes with a leveling leg, so that you can keep your stand vertical on uneven surfaces). For backpacking, you'll like the weight of only 1.65 lb / 0.75 kg and a compact folded length of only 20" / 50.8 cm.


MINI BALL HEADS


Mini Ball Heads are placed between your panel lights and your light stands. The mini ball heads allow you better lighting control (to "4. Feather the light"). The top ball head is a Lube Cube product ($24.99). It's well made, but a little overpriced for your needs, in my opinion. The DSLR shoe mount at the bottom (which also has a female 1/4"-20 thread for tripod or light stand mounting) is not need for our stationary type of lighting. I think the Oben BD-0 Mini Ball Head (via B&H for $12.71) is just as well built, and accepts both 1/4"-20 and 3/8"-16 studs at the bottom, but without the DSLR shoe mount. The bottom mini ball head is a ripoff of the Terra Firma design that you can get from B&H for $15 — or you can get this cheap mini ball head on Amazon for only $3.50! (This product is more than adequate for holding and positioning a light weight LED panel on top of a light stand.) Note: If this product link disappears, just search on Amazon for "Swivel Mini Ball Head 1/4 Screw Tripod Mount" and you should find several similar products.

NOTE: This page is currently under construction. Until it is finished, please refer to this webpage about additional lighting equipment from my friend, Wayne Pinkston.










Saturday, June 24, 2023

Focus Stacking Nightscapes with Marybeth Kiczenski

 

Big Stable Lighthouse by Marybeth Kiczenski • Foreground taken during the blue hour, using several 15 second "focus stacked" exposures at f/8, ISO 800 • Sky is a 90 seconds tracked exposure, ISO 1000, f/2.8 • Sony a7iv  camera, with a Sony 24-70mm lens at 50mm.

Winter blooms at Anza Borrego by Marybeth Kiczenski • Foreground taken during the blue hour, using several 6 second "focus stacked" exposures at f/8, ISO 800 • Sky is five 1-minute tracked exposures (a total data stack of 5 minutes), f/2.8, ISO 800 • Sony a7iv astro modified camera (to visible + H-alpha), with a Sony 12-24mm lens at 14mm.

Step-by-Step Tutorial

A 3-image focus stack taken during the blue hour by Marybeth Kiczenski.

Focus stacking your night images is a great way to improve the overall image quality.  Much of the process is akin to daytime focus stacking – but with a twist.  Depending on if you are blue hour blending, or using true night images, the process may include further post processing.  

One of the most popular case uses for focus stacking involves flowers.  Flowers make beautiful foreground subjects, but with wide-angle images at F/16 – the depth of field rarely is enough for these small, yet mighty, subjects.  

Before we dive in, also note that flowers move.  They move A LOT.  The slightest of breezes can move these delicate subjects.  You may find yourself either giving up, OR doing your focus stack of the flower in blue hour – sometimes VERY early blue hour.  Basically, as soon as the directional light from the sun disappears.  The reason is you’ll need those faster shutter speeds to freeze the blooms.  

Pay attention to the weather considerations and wind.  You don’t want to miss that small window to capture still flowers!  

With that out of the way, let’s get to the task at hand.  You’ll notice here that the flowers here were taken not long after the sunset.  While I had the tripod set up in this spot from sunset to milky way, the sharpest stack was from this early evening time frame.  

Another point to consider:  what is your minimum focus distance of your lens?  As you can see here, the Sigma 14-24mm F/2.8 ART lens failed to catch the focus on the nearest flower to the lens.  But to be fair, it was basically on top of it.  If this is the type of thing that bothers you, then you’ll want to adjust accordingly.  I loved having the flowers frame the scene, so I creatively chose to live with this flaw rather than losing the top anchor flower. 

The yellow dots indicate the approximate focus points the camera chose in each of the three focus stack exposures. The lens aperture was set at f/8. An aperture of f/16 would have given greater depth of focus, but the exposure would have needed to be four times as long, which can cause flower movement, if there is any wind. If focus stacking had been done in total darkness (using an aperture of f/2.8), then a much great number of exposures would be needed to create the focus stack depth of focus (and focus for each would have been done manually).

The actual focus stacking process involves you starting on the nearest subject, and progressively shifting the focus until you reach the infinity point.  You can pick subjects from the scene to focus on, shift your lens step by step, or utilize some camera’s ability to in-camera focus stack.  This image was done with a Nikon D850 – the first camera from Nikon to have this feature built in.  The number of images you’ll need also depends on the aperture you choose. In other words, you’ll need a lot more images to complete the stack  at F/2.8 vs. F/16.  You may have to play around (if your camera doesn’t have the auto feature) to make sure you get everything in focus.  

IMPORTANT NOTE: If you are doing your focus stacking in the dark – you’ll have to manually focus on your different points.  This can be an issue if you are with a group, as the “easy” way to focus on the subject is to shine a light on it, set the focus, then turn it off.  Communication is key!  For this reason, (as well as the aforementioned weather issues), 95% of all my own complex foreground will likely be blue hour foregrounds.  There are times where this just isn’t possible, so you just deal with the parameters dealt!


After you collect all your in-field data (focus stack images and your starry night sky exposure), it’s time to do the process the focus stack:

  1. Open your best sequence in the editing software of your choice.
  2. Apply your basic edits.
  3. Save the edited images.
  4. From here, you can use Adobe Photoshop, or software such as Helicon Focus.  For images that Photoshop has issues with, I will use Helicon.  [Update: recent Photoshop updates drastically improved its built in focus stacking algorithm.]
  5. Open the files as a stack.
  6. Click on “attempt to align layers”
  7. Once the images are loaded into layers, I will then Auto-Align them.  This just insures to me that they are aligned to the best of the computer’s ability to do so.
  8. Select all the aligned layers, then click “Auto-Blend”  The Auto function typically will suffice.

The computer will then apply masking as it sees fit to make a seamless blend.  Photoshop uses depth mapping for this type of stacking.  When that doesn’t work correctly, that’s where Helicon Focus comes into play.  This program features different algorithms to figure out the focus shifting beyond the scope of Photoshop.  You can pick between these algorithms and see how it changes the stack.  

Once you are happy with your focus stacked image, save that file out.  From here we will now go into adding in the sky, and color matching the two assets to make a final composition!


PUTTING IT ALTOGETHER

At this point, you should have two main images to work with:

  1. Focus stacked foreground image
  2. Single exposure / a Stacked exposure / or a Tracked sky image

Open the focus stacked image.  From here you’ll want to apply a mask to remove the sky.  This can be a number of ways.  The easiest of which is using Photoshop’s new “Select Sky” function.  This works remarkably well for well defined horizons.  I find that it starts to struggle with trees.  Sometimes it will remove too much detail in these complex areas.  It’s always worth a try, though!  As it's the easiest method! 

If this fails, you can deploy the very powerful color-channel masking method.  This is a bit advanced, but it's remarkable – especially when dealing with trees.  Here’s the simplified process:

  1. In the layers panel, navigate to the color channels tab.
  2. Click on each channel until you find the one that separates the foreground from the sky the best. Usually this ends up being the blue channel, but not always.
  3. Copy that color channel into its own new layer.  This step is IMPORTANT, as if you don’t copy it, any changes you make will affect the master image.
  4. Use brightness/contrast to create more separation.  You want a black and white image.
  5. Use the dodge and burn tool to define the edges.
  6. Once happy, then select one of the colors – either black or white.
  7. Click back to the full color image – and click on “apply mask”.



Masked Focus-stacked foreground — ready to be blended with starry night sky image


Once the sky is masked out, then you can open your sky image.  Copy that image over to the foreground image into its own layer.  I always put the sky under the foreground.  


Now save this master file out as a new file.  This way you still have an unaltered focus stacked image, in case things go drastically wrong. 

Initial blend of foreground focus-stack and sky exposure

COLOR BLENDING

Here’s where your creativity begins to take flight!  Using the Hue/Saturation, Color Balance, and Selective color under Adjustments, start working the colors until the foreground begins to match the sky, or vice versa.  This is really a personal preference.  Blue hour images – as the name implies – are heavy in the blue/magenta tones.  Some will choose to keep with this theme, and make the night sky match the blue tones.  However, the colors of the natural night sky are not blue.  So you have to make this creative choice.

The magic is really in the color matching for creating convincing compositions.  It can take a lot of small finessing and adjustments, and practice.  

Once you are happy with the color matching, then you can take the editing further with curves, brightness, contrast, using the Nik collection, and more! 

Final post-processed blend






Monday, June 5, 2023

Remote Utah Nightscape Workshop

 

Natural Obelisks "Mom, Pop and Henry" in Capitol Reef National Park

The same Cathedral Valley spires photographed, using a Blue Hour blend. These features were first photographed in 1854 by Solomon Carvalho, during a John C. Fremont expedition to the area. The spires have since been largely ignored by modern photographers due to their remote location in the park.

Utah Badlands and Capitol Reef Nightscape Workshop - led by Royce Bair and Robert McKendrick - September 11-15, 2023 - limited to only 6 participants.

Why this remote area of Utah? The "badlands" between Hanksville and Cainesville, and the "Cathedral Valley" area of Capitol Reef National Park are far away from the crowds you see in other popular central and southern Utah locations, yet they have stunning beauty and some of the darkest skies in the world. There may be some days you will not see another person, other than our group!

Why in September? September 11-15 is during a new moon period. The temperatures are more moderate. May and September are the two best months for this area. The Milky Way is more diagonal in May, whereas it is more vertical in September. The core of the MW doesn't rise until about midnight in May, with the best images during 1:00 to 3:00 in the morning (allowing for very little sleep)! In September the MW core is ready for photography by 9:10 PM and stays up for two hours — allowing for both great nightscapes and better sleeping cycles (as well as sunrise photography)!

A November Milky Way "erupting" over Factory Butte, Utah badlands

A November Milky Way over "Thumb Butte" - Utah badlands

Spring panorama over Needle Mountain in Upper Cathedral Valley by R. McKendrick (Note: October Milky Ways do not arch like this, but remain vertical; however, skies are so dark in this area, that very little post-processing is required for either season!)

Why only 6 participants? Robert and I want your experience to feel very personal and not crowded. Our attention will be on you and your needs. We will only use our cameras when it necessary for instructive examples.

Will we be doing any daytime photography? Absolutely! Because of the October night cycles, we will be able to do photography before and during the sunset periods; and we'll have several sunrise opportunities for photography. If you have a drone, you may wish to bring it, as there will be several opportunities to fly and photograph with it.

Factory Butte at dawn by R. McKendrick (yes, this sky is real!)

Skyline Overlook (Utah badlands) by R. McKendrick

Temple of the Moon and Sun, Capitol Reef National Park by R. McKendrick. This is a drone photo. Note that truck in bottom right corner is just outside park boundaries.

Drone aerial abstract of bentonite hills near Mars Research Station by R. Bair

North Cainesville Mesa by R. McKendrick

Upper Cathedral Valley sunrise by R. McKendrick


What is the physical exertion level for this workshop? Moderate. Most photography locations will be within 1/4 mile of your car or less.

Will transportation be provided? No. We suggest that each workshop attendee bring or rent a high-clearance vehicle. 4-wheel drive is usually not necessary, but preferred. Much of our daily workshop travel will be on gravel or dirt roads. Your airline flights can be into Grand Junction, CO (2.5 hours/159 miles to Hanksville), Salt Lake City (3.5 hours/231 miles to Hanksville) or Las Vegas (6 hours/370 miles to Hanksville).

Will lodging be provided? No. You will need to arrange lodging in Hanksville, Utah (our base). We suggest you book at least 5 nights (September 11-15, checking out on Sept. 16). We recommend Duke's Luxury Cabins (about $169/night) or the Whispering Sands Motel (about $149/night, with a 10% discount for AAA or AARP/seniors).

Will meals be provided? No. There is at least one good restaurant in Hanksville, a fast food burger spot, a grocery store (The Bull Market), a pizza spot (inside the grocery store)  and a couple of convenience stores. We will be providing snacks and bottled water.

Daytime post-processing sessions will be included for those who want this instruction.

The cost of this workshop is $1995 per person, with a deposit of $900 to hold your spot. Full payment is due at least 30 days before the workshop. You may cancel by July 10th and receive a full refund. You may cancel by August 10th and receive a 50% refund. There are no refunds after August 10, 2023.

To REGISTER for the workshop, eMAIL ME and I will send you an invoice for $900 to secure your workshop spot. You can use this same email to ask any questions. 


Tuesday, March 7, 2023

Sample Pages from my New eBook

 Here are six (6) random sample pages from my new Milky Way NightScapes Version 2.0 eBook:

Click on image to enlarge

Click on image to enlage

Click on image to enlarge

Click on image to enlarge

Click on image to enlarge

Click on image to enlarge

HERE is what a typical weekly update looks like (a 4-page PDF).  This update is about using moonlight in your nightscapes, and features "Guest Artist" Brad Goldpaint. Be sure to check out the NightScaper Conference video link on this sample update for even more "how-to" learning. The weekly PDF versions of the above sample pages will often have hot links to many outside learning resources.

Update 2.0 will cover the NEW ADVANCES in:

  • Astro-modification to Camera Sensors
  • Filters to increase nebulosity (giving that "deep space" look)
  • New Tracking options
  • Stacking for noise reduction & reduced star movement
  • Software for Noise Reduction
  • Deepscapes (a new nightscape genre)
  • Low Level Lighting techniques & equipment
  • Mixing Moonlight with the Milky Way
  • Twilight Blends vs. Starlight Blends
  • Obtaining High Quality Single Exposure NightScapes

PRE-ORDER my NEW Milk Way NightScapes Version 2.0 HERE.

(You can also get my original eBook here, if you don't already have it. It is a great way to jump start your nightscape photography.)